
A-Ai63 2?1 STARS (SOFTUARE TECHNOLOGY FOR ACAPTASLE ANO EEL INLE L/1
SYSTEMS) METNOOOLO.. (U) INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA VA C N MCDONALD ET AL. MAR 95

UNCLASSIFIED IDA-P-1814-YOL-2 IDA/NQ-85-29622 F/6 9/2 NL

I m flllf lff..llff

NATIONAL 5MAU OF STANWMO
inGUOOTf MOOinIC&T

'7-7.77 777-- :' Z _:T_'o -
/7-

copy~ Zoi

IDA PAPER P-1814

r STARS METHODOLOGY AREA SUMMARY

SVolume II: Preliminary Views on the Software Life Cycle

U and Methodology Selection

Catherine W. McDonald-

William RiddleDT
Christine Youngblut EECTE

March 1985D

Prepared for

L Office of the Under Secretary of Defense for Research and Engineering

[*1 gf~ iiLLcopyI

INSTITUTE FOR DEFENSE ANALYSESI ~ 1801 N. Beauregard Street, Alexandria, VA 22311.

86 1 2 01 IDA Log No. NO 654322

The work reprted In this document was conduc mmdr Contract
No. MfA Mll4 C 0031 r theeoprutu of 00uum. The pu s-
tn of this IDA Paper des a Indical ,, , o ,m , by Oth D-.

.thefglgil pm of tmot gocy. P-.

This Paper has been reviewed by IDA is asswe that I eets high
stadrs of theoughess, esoctivity, and sou nad ulytcalmovilef oWd n conclmusionm sla in m oilood .

fe

r;

4..

-CU,-- CASS *-SIFICATON OF TIt PACE ./7 /

REPORT DOCUMENTATION PAGE

I& REPORT SECURITY CLASSIFICATION lb. RESTRIClIVE MARKINGS
Unclassified

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

2b. /ECLASSIFIATION/OOWNGR&INNG SHEDULE Approved for public release;
bNAA A Distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

P-1814 Volume I1

Go. NAME OF PERFORMING ORGANIZATION Sb OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses (i apcikbl) DoD-IDA Management Office

Sk. ADDRESS (City. State, d ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1801 N. Beauregard Street 1801 N. Beauregard Street
Alexandria, VA 22311 Alexandria, VA 22311
Ia. NAME OF FUNDING iSPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION 91 agcabe)

OUSDRE (R&AT) STARS JPO MDA 903 84 C 0031
8c. ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1211 Fern Street PROGRAM PROJECT TASK LWORK UNIT
Arlington, VA 22202 ELEMENT 10. AM. NO. SSK N NO.

IT-5-293 r
.I. TITLE fMlude Security assiiFication) Methodology Selection

STARS Methodology Area Summary Volume II: Preliminary Views on the Software Life Cycle and/

12. PERSONAL AUTHOR(S).
Catherine W. McDonald, William Riddle, Christine Youngblut

13&. TYPE OF REPORT 43b. TIME COVERED 14. DATE OF REPORT (year, Monh. Day) S. PAGE COUNT
Final OO 9I

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I8. SUBJECT TERMS (Cotinue on reverse if necessary and idlentify by block number)
FIELD GROUP SUB-GROUP methodology, Ada, software engineering, methods, life cycle,

classification, evaluations, selection, software, character-
istics, maintenance design

19. ABSTRACT Con t ne on revere f necesauy nd ildeastif by block nuber) Initially, the Ada Jaht Program Office

(AJPO) sponsored Professors Peter Freeman and Anthony Wasserman to identify requirements for
software development methodologies that would allow the Department of Defense (DoD) to

realize the full potential of Ada. Since that time, the work on methodologies to support Ada
has been transferred to the DoD Joint Program Office for the program entitled Software
Technology for Adaptable and Reliable Systems (STARS). The STARS Joint Program Office (SJPO)
objective is to improve the productivity level of software system development and support as
well as the resulting quality of deployed software systems.

This report consists of two volumes: Volume I presents the organization and olans of
the STARS Methodology Coordination Team. Volume II is a technical report concerned with the
development of methodology classification, evaluation and selection technologies and a
framework of characteristics that can be used to support these technologies.

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O'UNCLA$SIFIEDIJNLIMITED 0 SAME AS RPT. 0 DTIC USERIS 2[[-

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
L All other editionS are obsolete

" /.Z, r;-", ." "'.," " ,"" :" " ,", " " "-- ".', . " '. " ."- "." '. " *" ", "-" 2 "- . - . -- " .'.," . .- - ." .

IDA PAPER P-1814

STARS METHODOLOGY AREA SUMMARY

Volume II: Preliminary Views on the Software Life Cycle
and Methodology Selection

Catherine W. McDonald
William Riddle

Christine Youngblut

Accesion For
March 1985 NI R&

DTIC TAB
Unannounced 0o

* ~Justification....

By -------
Dt-A, ibition I

Availability codes

Dt Avail and/or
Dit Special

=~ IDA
INSTITUTE FOR DEFENSE ANALYSES

t Contract MDA 903 84 C 0031
Task T-4-22

qACKNOWLEDGEMENTS

The authors would like to thank those people who participated
in the limited review of this document. Suggestions not
incorporated in this document will be addressed in future
publications under the STARS Methodology Area.

The authors also appreciate the efforts of Joe Batz, Carol
Morgan and Robert Mathis from the STARS Joint Program Office, and
Tom Probert and Jack Kramer of IDA for their comments on previous
versions of this document. Special thanks go to Lou Chmura, Sam
Redwine, Pete Fonash, George Sumrall and all the other members of
the MCT who contributed so heavily to the material presented here.

Finally, the authors would like to thank Jo Ann Stilley andBetty Henderson for their assistance in preparing the document.

Mrs. Stilley spent many hours typing the various drafts and the
final version. Ms. Henderson prepared all of the figures and
tables.

.' .

£..1

"-" I".i'

r ,:.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii
LIST OF FIGURES vii

1.0 INTRODUCTION 1-1

2.0 SOFTWARE METHODOLOGY CONCEPTS 2-1
' 2.1 Basic Concepts 2-2

2.2 Software Versions and Levels of Concern 2-3
2.3 Software Life Cycles 2-5
2.4 Software Methodology 2-9
2.5 Classes of Methodologies 2-10

2.5.1 Product-Oriented Methodologies 2-11
2.5.2 Other Methodology Classes 2-13
2.5.3 Mixtures of Methodologies 2-14

2.6 Summary 2-14

" 3.0 CLASSIFICATION, EVALUATION AND SELECTION 3-1
3.1 Overview 3-1 i.-

3.2 Focusing on Ada-Compatible Methodologies 3-3
3.3 Selection Technology 3-3
3.4 Evaluation Technology 3-6
3.5 Classification Technology 3-8
3.6 Development of the Technology 3-10

4.0 METHODOLOGY CHARACTERISTICS FRAMEWORK 4-1
4.1 Overall Structure of the Characteristics Framework 4-1
4.2 Lower Level Structure of the Characteristics

Framework 4-3
4.3 Populating the Framework with Characteristics 4-5

- 4.4 Defining the Scope of the Other Categories 4-11
• 4.5 Current Status of the Characteristics Framework 4-16

.- SUMMARY 5-1

REFERENCES R-1

" APPENDIX A GLOSSARY A-i

v

S. S *S * S* - * * *,•

-.:....-*SS** 5 ~5S5
5SS** 5 % 5 ~ * 5

S S S 5

LIST OF FIGURES

Page

- Figure 2-1 Activities During a Version Life Cycle 2-6

Figure 2-2 Activities During a Software System
Life Cycle 2-8

Figure 2-3 Relationship Between Software System Life
Cycle Phases and Life Cycle Activities 2-12

Figure 3-1 Selection, Evaluation and Classification
Technologies 3-2

Figure 3-2 Selection, Evaluation and Classification
for Ada-compatible Methodologies 3-4

Figure 3-3 Selection Technology 3-5

Figure 3-4 Evaluation Technology 3-7

Figure 3-5 Classification Technology 3-9

Figure 3-6 Classification, Evaluation and Selection
Technologies for Ada-compatible
Methodologies Including Secondary
Dependencies 3-12

Figure 4-1 Definition of Characteristics Categories 4-2

Figure 4-2 Characteristics Framework 4-4

o Figure 4-3 Preliminary Matrix for Collections of
Technical Characteristics 4-6

Figure 4-4 Technical Characteristics Pertaining to
Efficiency and Product-oriented
Methodologies 4-8

* Figure 4-5 Preliminary Matrix for Collections of
Management-Related Characteristics 4-13

vii

'..-'

LIST OF FIGURES (Continued)

Page

Figure 4-6 Preliminary Matrix for Collections of
Usage-Related Characteristics 4-14

Figure 4-7 Preliminary Matrix for Collections of
Ada-compatibility Characteristics 4-15 Y'_

viii

i ,-j;..-...

1.0 INTRODUCTION

In September 1983, the Methodology Coordination Team (MCT)
began addressing the comments made on the METHODMAN document
prepared by Peter Freeman and Anthony Wasserman (1). These
comments included:

* only "traditional" methodologies were addressed

- it focused primarily on the development part of the
software life cycle,

software life cycle defined in DoD-STD-SDS,

• the set of characteristics given for classifying
software methodologies was incomplete and many of the
identified characteristics were not concrete enough to
be measured,

t the organization of the set of characteristics was ad

hoc, and

" the requirements given for Ada*-compatible
methodologies were too general and not specifically

m. related to the characteristics.

In addressing these comments, the MCT focused its attention on two
major issues: (1) software development and 'maintenance' life
cycle and (2) an approach to classifying, evaluating and helping
people to select methodologies. This report is a summary of the
initial work of the MCT on these issues.

Basic concepts of software creation and evolution are
identified in Section 2. The use of modeling, information
accumulation and analysis are discussed as ways of coping with the
risk, uncertainty and complexity associated with most software
projects. Different types of software versions are distinguished.
and the general nature of the methodological issues associated
with each are discussed. The concept of a life cycle is defined
and then used to identify the spectrum of activities involved in
creating and evolving various types of software versions. The

*' concept of using specific methods or general methodologies to
a. organize and discipline these activities is then discussed and

several different types of methodologies are distinguished.

* Ada is a registered trademark of the U.S. Department of
Defense (Ada Joint Program Office)

4211
:... .-. .-- . . -

% -t . - -- -. . - -. ..- --1: ,

Finally, the prospects for covering a broad spectrum of activities
by using several compatible methodologies are discussed.**

In Section 3, the problem of evaluating and selecting among
alternative methodologies is addressed. The need for technologies

. to support the classification and evaluation of specific
methodologies and the selection of a methodology from among
alternatives is established. Interrelationships among these
technologies are addressed, as is the process of co-evolving
them. The intertwined roles of selection criteria, evaluation
measures and classification metrics are discussed. Finally, the
discussion establishes the critical need for detailed methodology
characteristics supporting the definition of criteria, measures
and metrics and therefore the classification, evaluation and
selection technologies.

A means of organizing the potentially very large set of
detailed characteristics is the subject of Section 4. A
preliminary framework is proposed for organizing the
characteristics such that one can identify a subset of
characteristics pertinent to a general area of methodological

*. concern, a specific type of software version or a general
methodology. The framework specifies a way of further organizirg
any subset of characteristics, in particular, subsets identifie'
by using the gross structural framework. The framework is
specifically designed to be extensible and this aspect is
discussed. In addition, a procedure is presented for enumerating
characteristics to provide an initial population which could then
be refined and elaborated through further use of the enumeration

" * procedure or other procedures.

The scope of the work presented here is broad and its nature L
is preliminary. It is intended to give direct and balanced
attention to both the software creation and evolution process and
the products produced during this process. It is also intended to

S'encompass not only software programs themselves but also all the
myriad other documents and products produced during a softare
project as well as the activities concerning the role of software

-. as part of some automated system. While the work has been, of
necessity, developed in the context of extant methodologies, an

• * Throughout this report, and particularly in Section 2, care
is taken to establish a well-defined terminology. A
glossary appears as Appendix A. In preparing definitions
the IEEE Glossary of Software Engineering (2), and other
glossaries, were consulted. Our definitions deviate from
these already established definitions whenever it was felt
necessary.

1-2

°* . * o ° . . * = • . ° o . .. • SOO ° - . - - o .

attempt has been made to provide a groundwork which is flexible
enough to accommodate future improvements in software methodology
as they appear. Overall, the work is intended to be a
preliminary, malleable step toward obtaining and using the
specific algorithms, metrics, attributes and data that can be
expected in the future.

1-3

!.

K T

2.0 SOFTWARE METHODOLOGY CONCEPTS

" Discussions of software methodology are often plagued by

confusion and misunderstanding because of differing perceptions and
experiences. For example, software developers and project managers
usually have quite different views of the software creation and
evolution process because of the different activities they see as

OD making up the process and the quite different concerns they must
- address. The situation is often complicated, as with many aspects

of computer science, by a lack of a widely-used, consistent
*- terminology.

C... Terminology and a way of thinking about the software creation -

and evolution process are presented in this section to provide a I,
conceptual basis for subsequent discussion of methodological
issues. The way of thinking attempts to focus on the process
itself as well as on the products produced as a result of the

* process, to be pertinent to new approaches as well as those
currently in vogue, and to tie the issues of software creation and
evolution into the larger problem of creating and evolving the
automated system of which the software is a part.

The following statements provide a quick synopsis of the

conceptual basis and terminology introduced in this section:

1. A software method is a disciplined process for producing
software. It assists in coping with the high levels of
uncertainty, complexity and risk that surround most
software projects. The majority of current software
methods rely on modeling, information accumulation and
analysis techniques to provide this assistance.

2. A software methodology is a collection of methods. The
collection may serve to highlight those aspects common.-"
to all the methods. Or it may serve to define an
approach to software development and post-deployment
support which is broader in life cycle coverage than any
of the methods. In either case, a specification for the
methodology defines those general principles, practices

and procedures shared by all of the methods rather than
the specific details peculiar to any particular method.

2-1

_N 2.
~~~~.......... . . ........ I...... hl.. . ..



3. There are several levels of concern when considering
software methodologies. These range from the software
being one part of an automated system to the software
being an object undergoing change to correct
deficiencies or enhance its capabilities. Methodological
concerns vary across these levels. -

4. The software life cycle organizes the activities
performed during software development and post-
deployment support. The phases of a life cycle differ,
in terms of the emphasis on the activities involved,
across the levels of concern.

5. Product-oriented methodologies organize development and
post-deployment support activities, each emphasizing the

, production of (intermediate or final) products needed to
achieve some milestone. Other types of methodologies
reflect other approaches such as developing a sequence
of gradually more mature versions.

-2 Basic Concepts

* Software creation and evolution involves the preparation of
various products by following some process. One product is the -
software's code, that is, its executable version. Other, equally
important, products are designs and specifications for the
software, users' manuals, test case definitions and results, and
project histories (currently prepared in document form). In this
report, the term software refers to all such products, not just the
executable code.

Most DoD software systems have a level of complexity that is
* almost overwhelming. In addition, creating or evolving the
,o software system is often a high-risk activity because the software

is frequently targeted for use in an application where little
experience exists to indicate whether an acceptable result can be
obtained in a meaningful time period and with a reasonable
expenditure. This risk is accompanied by a high level of
uncertainty about the system's functionality and performance, an
uncertainty that persists at least until the software is
implemented and can be tested in its operational environment.
There are many techniques for coping with this complexity,
uncertainty and risk. Current approaches to software creation and
evolution tend to emphasize three techniques: modeling, information
accumulation and analysis.

Every product of the software development process, except the
software's executable load module, is a model, that is, an abstract
description not containing all of the details. The obvious benefit
of a model is that it helps in coping with complexity by
highlighting pertinent aspects of the software. Models also aid in

2-2

P. -
:- :.0'e



coping with risk since they provide points which can be returned to
should errors occur when

determining the details. Risk can be addressed by gradually and
rationally elaborating the details of a software system in a way
that supports periodic assessment of progress, that is, by
following a process of information accumulation. This process
can vary from being informal and intuition-based to being
rigorously defined in terms of specific activities, techniques,
work products and reviews. Finally, analysis is the process of
assessing the software's suitability and, as such, primarily
addresses the uncertainty problem. Techniques for incrementally

testing portions of a software system as they are constructed are
prime examples.

Modeling, information accumulation and analysis provide a
strategic basis for coping with complexity, uncertainty and risk.
These and other techniques require the use of software technology
and software methodology. Software technology provides basic
techniques for accumulating information as a series of well-defined
models that can be analyzed before the software *is fully
operational. Software methodology imposes the discipline making
the overall process orderly and ensuring smooth and steady
progress. It also helps assure that project resources are
appropriately used so as to arrive at closure on time and within
budget.

Software technology and software methodology are highly
interrelated, with the details of each having a strong impact on
the other. Consequently, while focusing on software methodology,
it is important to realize that fully working out the details of a
particular approach to disciplining the process requires
identification of the software technology which supports, and
complements, the approach.

2.2 Software Versions and Levels of Concern

Software must be frequently changed to accommodate changes in
requirements, repair errors, or upgrade quality. This leads to
several versions of the software existing over time. Some of these
versions are transient attempts to meet the requirements while
others have relatively long lifetimes of operational service.
Versions actually placed into service may reflect relatively minor
modification or they may reflect the major modifications needed to

t provide similar functionality in totally different operational
situations.

Three major categories of versions are of interest because
they relate to different sorts of methodological concerns. A
software system is a version which delivers a capability in a form
appropriate for integration with other components to create an
automated system. For example, different software systems may

2-3

- . J .'%



deliver a flight control capability for different types of
aircraft. A software release is a version of a software system
that is incorporated into and supported as part of an operational
automated system. Each release is intended to meet the software
system's requirements and new releases appear primarily because of

k changes to the required functionality and performance or
corrections to remove errors discovered during operational use. A_ _6

software variant is a (perhaps incomplete) version of a software
release that is an (perhaps incorrect) attempt to meet a release's
set of requirements. Successive variants may reflect design and
implementation changes made to bring the software into closer
conformance to the release's set of requirements.

These three major categories are hierarchically related. A
release encompasses a sequence of variants, each being a more
suitable attempt to meet the requirements established for the
release. Similarly, a software system encompasses a sequence of
releases meeting the changing requirements levied by the software
system's operational environment..*

This distinction of three levels of software versions
delineates three levels of concern for organizing and disciplining
the process of software creation and evolution.

Corresponding to the highest level (software systems) are the
overall concerns of how software fits into the automated system of
which it is a part. The process of software creation and evolution
at this level must account for activities such as: pre-software
definition and design of the automated system itself, making
tradeoff decisions concerning which components will be realized in
software, integration of the separately created and evolved
components, upgrading the requirements levied against a software

. system, and demonstrating the software system's validity in terms
of meeting recognized needs.

Corresponding to the intermediate level (software releases)
are the project management concerns of delivering a capability on
time and within budget. The process at this level must account for
activities such as: deciding when a new release is warranted and
can be undertaken, delivery of the individual releases on time and

- within budget, managing the overall process using tools for change
control, traceability, impact analysis, etc., and modularization of
the software system into major subsystems.

And, finally, corresponding to the lower level (software
variants) are the technical concerns relating to preparing a
complete and demonstrably suitable version which meets a set of
requirements. The process at this level must account for
activities such as: periodically verifying that the requirements
are met, and determining low-level modules that can be worked on by
individuals or small groups and that lead to an efficient
implementation.

2-4

.. ?. .. . . . . . . . . .. * *.*. .. *. **~- '"*-.- .o.



2.3 Software Life Cycles

Every software version will be created and evolved through
activities which make up the version's life cycle. The life cycle
starts once the need for the version is recognized and continues
until the version is retired from service.

Many models of the life cycle have evolved over time. The
majority of these primarily pertain to software releases and
attempt to discipline the life cycle. The majority, therefore, are
strongly related to only a portion of the methodological issues
(those corresponding to releases) and are prescriptive, or at least
reflective, of a particular approach to software creation and

t evolution. A more generic view of the life cycle, pertaining to
all types of versions and relatively independent of any particular
software creation and evolution approach, is presented in this
section and used to define various terms describing activities
during software creation and evolution.

Regardless of how the creation and evolution process is
carried out, every version will pass through a sequence of
historical time points during its life cycle. The time points in-.
the history of many types of versions are shown in Figure 2-1 and
can be defined as follows:

Conception: the first point at which a need for 'a version
is recognized,

Definition: presentation of a possibly rough and
incomplete statement of the problem to be
solved by the version

Specification: presentation of a possibly rough and
incomplete description of the user-visible
features of the version,

Delivery: presentation of a believed-to-be-suitable
version for integration into the automated
system

Deployment: presentation of the version for actual use,

Freezing: determination that no further changes will be
made to the version, and .

Retirement: removal of the version from service.

2-5

-. . . . . . .* *~ , o.. . . .-'-'... ?. . ...- '-'- -.'..'........ . . .-- "--,........ ... .. -.-.-. ."-'-.......-.---- ...- "..,. .... " '° "-.-".", .",,-.,. ....- ',,



... 
.. 4. -a a- . - - . . .

. 2 --.- .. -. , . -r" - rn_.. " r r - - . - - - . a - - -- a..,

I.Ob.

delivery deploineut

a" speeifi ation freezinm g.

retirement .-
defimition

eemeeptieim_7

;..

ATdeveloepment inmstallatio om peratioen

validation

p%
I-" v e r i f i c a t i o n

Iorrective naintenance

, .. 
.-. .

Figure Z-1: Ativities During a Version Life Cyle,

.. 
.,-..,.

2-6

z..

--a .
;: 

. *



- * - .*--. . ... .. g

0 jb

These time points can be used to define the following activities: ' b

Development: the activity of preparing a deliverable.
version

Installation: the activity of preparing a deployable
version from a delivered version,

Operation: the activity of using a deployed version,

Validation: the activity of analyzing a version to assure
that it meets user needs,

Verification: the activity of analyzing a version to assure
that it meets its requirements,

Corrective the activity of evolving the version, after
Maintenance: deployment, to correct deficiencies.

This view of the life cycle is pertinent, without
modification, to software releases since it has a strong heritage
in existing life cycle models. It is also pertinent to software
variants once one realizes that a variant's life cycle is a subset
of this general life cycle because a variant may inherit much of
its detail (in particular, its specification) from a previous
variant and may be dropped from active consideration prior to
delivery.

The life cycle of Figure 2.1 is pertinent to a software
system although some additional terms are traditionally used when
describing a software system's life cycle. These terms are
introduced in Figure 2.2. The time lines at the top of this figure
represent the life cycles of the various releases occurring during
the software system's life cycle. The release life cycles may
overlap, except that: 1) the delivery and deployment time points
for the successive releases are ordered over time, and 2) the

*' deployment of one release is generally coincident with, or prior
to, the retirement of the previous release.

The new terms introduced in Figure 2.2 are:

Operation & the activity subsequent to deployment
Maintenance: of the initial release of a software ..

r" system, and

Perfective and the activity of upgrading a
. Adaptive software system through new

Maintenance: releases.

* 2-7

. ,



*'* releaselI

release 2

r release n

SOFTWARE SYSTEM LIFE CYCIZ

A A A A A A A

delomnt

*1. delivey
Espciication freezing

definition retirement
conceptionI~4 0 44

development Installation operation & maintenance

validation

verification

* 1 4 corrective maintenance

perfective and adaptive maintenance

Figure 2.2: Activities During a Software System Life Cycle

2-8



The first is just a more explicit name for "software system
operation" and reflects common terminology. The second reflects
the additional activity of preparing new releases to enhance a
software system's capabilities.

Figure 2.2 highlights a confusion that frequently arises when
considering software creation and evolution activities. Software
system life cycles, such as presented in Figure 2.2, tend to
indicate a strong distinction between software development and
software operation and maintenance whereas everyone's intuitive
understanding of these activities is that operation and maintenance
typically involves some development activity. Figure 2.2 indicates
that this confusion comes from not clearly distinguishing the type
of version being considered. Operation and maintenance of a
software system may, and typically does, involve development of
software releases and variants. In defining the details of

*. software creation and evolution activities, one must, therefore,
clearly recognize the type of version being addressed and allow for
seemingly antithetical activities, performed in creating or
evolving lower-level versions, to be naturally included as part of
the defined activity. %

2.4 Software Methodology

Many diverse processes and activities occur during a life
cycle. These activities involve the accumulation of information
and the representation of much of this information as software
models. They also include the analysis of the models and
information to assess the system's suitability as created or
evolved up to some point in time.

A software method is a specific set of rules, techniques and
guidelines for carrying out these processes and activities. Thus,
a method serves to organize and discipline the overall process of
preparing and evolving the software. Some software methods will be
appropriate for software systems whereas others may only be
appropriate for software variants. For example, to be useful for
the preparation and evolution of a software system, a software
method should address the problems of transitioning between
releases.

A software methodology is a collection of methods. There are
two interpretations of this definition. On one hand, the
individual methods can be compatible ways of performing different
activities -- for example, some can cover development activities
and some can cover operation and maintenance activities -- with the
result that the methodology itself is of broader life cycle
coverage. On the ot',er hand, all of the methods can cover the same
set of activities, sharing some common aspects but differing in
their details. In either case, a specification of the methodology

2-9

.';:.,



will identify those general principles, practices or procedures
which are the basis for compatibility among the different methods
or serve to highlight the commonalities among the similar methods.

Therefore, a software methodology is a general philosophy, or
approach, for carrying out the software creation and evolution
process. It provides general principles, practices and procedures
for using software technology to prepare and evolve acceptable
software. It also provides general principles, practices and
procedures for using management technology to guide the overall
process to a timely and cost-effective conclusion. Whereas the
software methodology provides a general approach to the
disciplined and systematic preparation and evolution of software,
a software method translates this general philosophy into specific
actions to be performed.

A software methodology is very closely related to the
software environment providing the automated and manual tools

supporting its use. These tools enforce or encourage following the
methodology's guiding principles and using the methodology's

L practices and procedures. A very important connection between a
methodology and an environment is that the methodology provides a
basis for integrating the environment's tools. By having all of
the tools support a single methodology, there may be a high degree
of coherency stemming from the unifying conceptual basis provided
by the methodology. The connection also extends in the other
direction. It is possible to assemble a collection of tools
without regard for the supported methodology. However, in such a
case, the results will inevitably constrain the way in which
software can be created and evolved. Therefore, such an

" environment will effectively impose its own, probably ad hoc,
methodology.

2.5 Classes of Methodologies

• .A software method or methodology has many features, for

* example:

scope: extent to which it disciplines the creation and

evolution of a software system rather than just
the individual releases or variants,

potential for automated support: extent to which it can
be supported by automated tools, and

coverage: extent to which it covers the full life cycle of
some type of version.

Special names are sometimes used to denote methods or
methodologies having specific scope or coverage features or

6*- -210"2-10 .. " '.

" w

' • ." "4 °

I f ' ' .. ' ..-. ' .. ' ." ' ..-. ' " ' " . " . " . " . ""' . . " . - - -' ' . . .. . - . . . . . . . " " .".-..:

" "- " .".......... •... " "•"• .•"-' * "." "-.*' .-. .-. ' '.'.- '..-'""","" '. .""""- """". -"""".'..''" . ."" """". " , ,"."



automated support potential. For example, a software system life
cycle methodology covers a software system's full life cycle and an
automated development method provides a set of automated tools for
those activities preceding delivery of a software version.

Different types of methodologies can also be distinguished
according to the general nature of the approach they specify. Thus
there are general classes of methodologies, with all the
methodologies in a class sharing some general features or
characteristics. Some general classes of currently popular
methodologies are discussed in the rest of this subsection.

2.5.1 Product-Oriented Methodologies

All methodologies result in the preparation of products and
one approach to specifying a methodology is, therefore, to define
these products rather than define the activities used to prepare
and analyze the products. Host current methodologies are examples
of this product-oriented class of methodologies and emphasize the

S intermediate and final products produced during the development
activity.L

A purely product-oriented methodology would specify the
products but not the order in which they should be prepared..--
However, current instances of this class also divide the life cycle
into phases, with the usual connotation that the phases are begun
in a prescribed order and that the products from one phase should

be finished and critically reviewed before progressing to the next
phase. A typical set of phases for a software system is shown in
Figure 2.3. The phases relate to the time points in the life cycle
and indicate the general nature of what is done during the
corresponding activities.

These methodologies generally do not specify particular
activities that should be performed; rather they define the
products that are to be produced and the general nature of how and
when the products should be reviewed. This reflects the project
management heritage of many product-oriented methodologies. The
definition of the products and their review points is, in essence,
a definition of milestones that provide management insight and
control.

A typical product-oriented methodology is defined by
DoD-STD-SDS for the development of DoD software systems (3). The

- general intent of this methodology is to wield management control
over the acquisition of a software release. While the emphasis of
the methodology is upon the initial release, the methodology is
also of benefit for the competitive acquisition of subsequent

2-11

[V. "."". ." ", "" " -"/""-." .' " -" . .". ""2 " '.' .""" .''.' .'-.''.''" -'."' "."' "' ' " " "- " "',"."", " ". ". " " ".." " "'."

•~~~~~~~S. - S ° ".



IM7 -- -T -- -7.7 77 .. 77

requirements definition

preliminary design

p detailed design

coding (implementation)

test and integration

post-deploymet support

(maintemance)

x x x x

UWFTiIE SYSTEM LIFE CYCLE PHAS 

WFTVARE SYSTEM LIFE CYCLE
* 4 * 0 0. * * * * "

I A A A A R A A

* I IIidelivery deployment

specification freezing

I definition retirement

conception ." ."

development installation operation a maintenance

validation
1A

I. .S-..

corrective maintenance

I-"perfective and
adaptive maintenance

Figure t.3: Relationship Between Software System Life

CyOle Phases and Life Cycle Activities

2-12



,. ,'7, X4 A 14

releases. The methodology defined in DoD-STD-SDS focuses on
(full-scale) development and defines the documents that are to be
produced during the phases shown in Figure 2.3. It also defines
some of the details of the activities during each phase, in
particular the reviews that occur during and at the end of. the
phase. Finally, DoD-STD-SDS specifies several auxiliary activities
such as configuration control and test management.

2.5.2 Other Methodology Classes

Since the idea of organizing the life cycle into phases first
appeared in the mid-1960's, several product-oriented methodologies
have evolved and matured. While they have proven to be generally
useful, some problems have been experienced. For example, where
there is little experience with the application being addressed, a
totally logical progression from high-level, application-specific

. concerns to low-level, implementation concerns has proven to be
difficult. In some cases, methodologies that are more attuned to

* the particular application have been found to be more effective.
Also, it has sometimes been difficult to incorporate new technology
into product-oriented approaches to development. These problems
have led to the introduction of other types of methodologies which,
while not yet as well developed, have been receiving a fair amount
Of attention. These alternatives of course result in the
preparation of products, but focus more attention on the techniques
used to carry out the process.

U Data structuring methodologies are one example of these newer
methodology classes. Product-oriented methodologies tend to
emphasize the top-down decomposition of a system's functionality.
However, data structuring methodologies focus attention on the
structure of the data being processed and the composition of
processing steps that perform the system's intended data
transformations.

Another class is object-oriented methodologies.
Product-oriented methodologies tend to emphasize development of the

*software system's functionality and, therefore, are primarily
concerned with modeling real-world operations in the software. The
object-oriented approach, on the other hand, provides a more
balanced treatment of objects and operations. It attempts to
mirror the problem space in the solution space by identifying the
(data and non-data) objects of interest and the operations which
act on these objects. The organization and operation of the
software is described by modeling the interactions among objects.
The software can be developed either using composition or
decomposition techniques.

" Another class of methodologies are prototyping
methodologies. Prototyping has been successfully used in other
disciplines, such as engineering and architecture, as a way of
coping with risk. It provides "rough cuts" useful in determining

2-13

%7i r -



a-.

the feasibility and suitability of emerging solutions. To date,

software prototyping has primarily been used to support
product-oriented methodologies as a way of clarifying the software
requirements. Through the prototype, users can get a feel for

whether the system will satisfy their desires and expectations. In
turn, the developers can extend their understanding of what the
users really need.

OW. Prototyping methodologies result from using prototyping as
the overall approach rather than just in support of requirements
definition. With such a methodology, an immature version is
initially built and then gradually elaborated to provide the full,

*: required functionality. In many ways, such a methodology reflects
what naturally occurs in software projects.

* 2.5.3 Mixtures of Methodologies

The different methodologies discussed above have different
, emphases. Therefore, it could prove valuable to use different ones

for different aspects of software creation and evolution. At the
moment, there is little experience in combining methodologies. As
more experience is gained, methodology combinations can be expected
to become more prevalent.

As an example, a recent empirical study (4) has shown that
prototyping is valuable when experience in the application area is
lacking and the risk in being able to develop a suitable piece of
software is high. The same study indicates that product-oriented
methodologies are valuable in producing production-quality
systems. This suggests that it might be beneficial to use a
prototyping methodology early in a project and then switch to a
product-oriented methodology for later releases.

Different methodologies could also be used for the different
levels of concern discussed previously. For example, a prototyping
methodology could be used to produce software variants, whereas a
product-oriented methodology could be used to guide the overall
process at the software system level.

2.6 Summary

Many approaches are available for coping with the risk,
* uncertainty and complexity associated with most software projects.

The majority of these methodologies attempt to provide the needed
discipline by emphasizing the gradual accumulation of information
about the software's operational detail. Others emphasize the use
of specific modeling techniques to capture the information in
unambiguous, rigorous terms. Few specify concrete techniques for .

analyzing the suitability of this information, other than late in .5.
the project when the software is close to being operational.

2-14

-"- - - .- -,-., - .. - .-.- - -". ".".- - - - --: '--., :4 .. ' -:-2::- -J-. .- :.r.



The majority of current methodologies specify a set of .
work-products to be successively (and perhaps iteratively)
developed. There are several techniques (such as prototyping) and
partial life cycle methods (such as object-oriented programming)
supporting this product-oriented approach. Concrete methods must

' be defined to capture these techniques in a usable form.

A complete methodology must address three major categories of

concern: those associated with assuring that the software fulfills
its role in the overall automated system, those associated with

preparing software that meets its specification, and those
associated with upgrading the software to meet changing
requirements. No current methodologies address all of these
concerns. It is most likely that a methodology which addresses all
levels of concern will be a composite with different methodologies
being used to address different concerns. Preparing such composite
methodologies will require a way of determining the differences and
similarities among methods. Methodologies themselves are a way of
highlighting differences and similarities since the definition of a
methodology provides an accounting of the features common to all of
the methods encompassed by the methodology. By defining-.
methodology classes, this highlighting can be emphasized even

' further.

Concrete definitions of methods, methodologies and
methodology classes are prerequisite to determining the
compatibility information needed to define composite
methodologies. However, a concrete definition requires the
identification of characteristics useful in making the distinctions
necessary to set various methods, methodologies or methodology
classes apart from each other.

* An appropriate set of characteristics can also provide a
basis for classifying and evaluating methodologies as well as
selecting among alternative methodologies. The general nature of
these technologies is discussed in the next section. This serves
to further define the nature of the characteristics which are
needed prior to a discussion, in Section 4, of the characteristics
themselves.

2-15

. . * . . ... . . . . . .



o

3.0 CLASSIFICATION, EVALUATION AND SELECTION

A means to classify, evaluate or select methodologies could
be used to support many activities:

• identifying methodologies for use on specific software
projects,

* identifying methodologies which need further development
to support some particular purpose, such as maintenance
in particular application areas,

.. developing a "consumers guide" to methodologies,

* choosing methodologies for empirical studies into issues
such as how to provide effective automated support, and

0 qualifying a methodology with respect to a set of
requirements.

The general nature of methodology classification, evaluation
and selection technologies, and the process of developing them, are
discussed in this section. The discussion here concerns their use
in identifying methodologies for specific projects. This
orientation has the benefit of highlighting inter-relationships and
interdependencies of the technologies; it is not meant to imply
that this would be their only use.

3.1 Overview

" The three technologies and their primary inter-relationships
are pictured in Figure 3.1. (In this section's figures, processes
and activities are indicated by names with all capital letters
whereas information and knowledge are indicated by lower case
names.) The overall process is to consider all possible

r-. methodologies and identify those acceptable with respect to the
criteria associated with a particular purpose. The major activity
is therefore selection of the acceptable methodologies. This
selection requires two supporting activity: an evaluation activity
which determines the "value" of methodologies and a classification
activity which determines a methodology's class. The relationship
among these activities is discussed in subsequent sections.

Overall guidance is provided by criteria, that is, by
specifications of need in terms of the methodology user's desires.
These criteria are purpose and project specific and for a project
reflect the target software's application area, the project's
management structure, the policies of the contractor and
and post-deployment support techniques and tools used in the

project. Ideally, the classification, evaluation and selection

3-1

*.. .,*'... ** * *



All PosibleAcceptable
\Methodologiesj Methodologies 4i

I.t.A

* SELECTION 
-

EVALUATION

** criteria

ITCLASSIFICATION

methodology characteristics

Figure 3.1: Selection, Evaluation and Classification Technologies -

3-2



~,....

technologies will identify a single, "best" methodology. But more
typically, it will identify a collection of acceptable
methodologies and additional criteria (or subjective analysis) may

* ~,have to be used to select a single methodology from among the
acceptable ones. Overall support is provided by characteristics,
that is, by attributes of methodologies useful for comparing and
contrasting them. These characteristics will be discussed later.

3.2 Focusing on Ada-Compatible Methodologies

Rarely are all possible methodologies considered. Rather,
requirements serve to reduce the set of possibilities and provide
an -initial focus. Since our interest is primarily with
methodologies supportive of the use of Ada, the set of requirements
in this case serve to focus upon those methodologies that can be L
efficiently and effectively used for Ada-based software systems.
This is indicated in Figure 3.2.

This focus limits the scope of the classification, evaluation
and selection technologies that are produced. The various
activities need only be able to handle selection from among
Ada-compatible methodologies. The various pieces of knowledge need
only pertain to these methodologies. While the technologies may be
useful in considering other methodologies, this would be a pleasing
side-effect rather than a specific goal.

3.3 Selection Technology

The activity of selection identifies those methodologies
" meeting the criteria specified for a particular project. Selection

* -. can be performed in many different ways, but each will generally - -

" involve focusing on a set of candidate methodologies and choosing
among the candidate methodologies. These subactivities are

* .highlighted in Figure 3.3.

Focusing narrows in on a set of methodologies to be given
detailed consideration. This narrowing of attention could be done
at any point in the process of identifying acceptable
methodologies. It could even be done more than once, interleaved L.
with the activity of choosing among the methodologies that previous
activities have identified as potential candidates.

Focusing could result from consideration of the criteria. For
example, the criteria might specify or imply that only prototyping
methodologies should be considered. Alternatively, focusing could
follow from consideration of factors that are not reflected in the
criteria. For example, an organization might prepare a list of
"approved" methodologies and the choice is limited to methodologies
from this list. Therefore, focusing may require a knowledge of
methodology classes and a means of determining whether or not a

3-3

" .* * .". . -*

... o . .... . ...° '. ° . ... °ff.. •. . , ..- ,o. .. ' . . . °- .- '-* . . .. ***. °••". - ~.o



Ada Compatible Acceptable

Methodologies Methodologies

SELECTION

E

Q EVALUATION
R
E

E

T4
SU

____ criteria

CLASSIFICATION

methodology characteristics

Figure 3.2: Selection, Evaluation and Classification for
Ada-compatible Methodologies

3-4

:L A - .7 o

E 9.-:

. . . .. . . . . . *.-...



12Ada Compatible Acpal

Meoodooes Mehoolgis

SELECTION

FOCUS ~ '~eCHOICE

(1 (~~~thodologiesis *

...... ... X
E. .....
Q. .....

.......U. .... .
.. ....

R EVALUATION:..
* E I.- R

M .... ...

.. c r t e i .....

CLASSIFICATION....

, ........ ..... . -. ~ m>.-~ ~ .,NY.S2CL c c s bta.#. . -



specific methodology is in a particular methodology class. It may
also require the ability to evaluate an entire methodology class
without evaluating each individual methodology in the class.

Subsequently, choosing among the candidate methodologies
involves evaluation with respect to the criteria and interpretation
of the results to identify acceptable methodologies. Again, many
approaches are possible, but each will require the ability to
determine the potential value of a methodology, or class of
methodologies, with respect to the criteria.

3.4 Evaluation Technology

Selection requires the ability to determine how well
individual methodologies meet the criteria. This determination
leads to a need for measures, that is, quantitative attributes that
can be used to determine whether or not a methodology meets the
criteria. These measures can be obtained by identifying useful,
existing measures or defining new ones through some measure
identification and definition activity. Once the measures have
been identified or defined, they can be used as part of an
evaluation activity that results in the methodology evaluations
needed to carry out selection. These new pieces of technology are
highlighted in Figure 3.4.

Sometimes, the criteria may be specific and quantitative
enough to be used directly as measures. More often, the criteria,
being use and user oriented, will only imply the measures to be
used. For example, "average coupling among modules" is a measure
that could be used to determine whether or not a methodology meets
the criteria "methodology should enhance maintainability." Prior
work and experience may already have led to a set of measures
pertaining to the criteria. Often, however, new measures will have
to be defined that are specific to the task of evaluating a
methodology with respect to the stated criteria.

Exactly which measures to use in any particular evaluation
activity may depend on the class of the methodology being evaluated
as well as on the criteria. Thus, the measure identification and
definition activity will, in general, provide a set of measures to
be conditionally used depending on the class of the methodology
being evaluated.

The definition of meaningful, useful measures has proven
notoriously difficult and most software measures defined to date
concern only a system's final implementation. Effective
methodology evaluation will require measures that pertain to other
products, as well as to the development or post-deployment support
process itself, the developers of the methodology, and the
qualifications needed to effectively use the methodology.
Preparation of a set of pre-defined measures and the development of *...r a measure identification and definition procedure is, therefore,

6, 3-6

". .."-". .-. ." .... .".. ., .- , .- .....'.. "- .". ." ". ". ."- ..".". ..."." ". -". K-"-" .!"
"' " " ' .., . ,' . " " ."." ' - ." "."" "' "/ "*. . * "' ""*. ""- '.*"."" °



e A P. .n~rt ji .; r~..t. r4rJ ~ w.. .. C.~r~aas--- ... . 7TV77--rnfKSAJZ lw1s 7- .7' n

. . . . . ............

K Ada Crepatible cceptabl

.. ... ... .. ... ....... .r -....
.. . .....M.thodologies .

.. R EVALUATION .......

E......~............................M AU E....M IDENTIF.CATION/
*: : : : .......

.... ...mthod.og characteristc

..... ... .... .. . ... ....

................ ...



*critical. (The STARS program has started to address this critical
need through the preparation of an initial set of measures (5).)

Once measures have been identified and defined, evaluation *
can be performed. The basic activity during evaluation will be to

. -determine each methodology's "value" with respect to the criteria.
Since the course of evaluation may depend on the class of the
methodology under evaluation, information about the various classes
may. have to be available during evaluation. This methodology class

S .information may also allow evaluation to proceed more efficiently
since it might be possible to evaluate entire classes of
methodologies as a whole.

him 3.5 Classification Technology

S.- The evaluation and selection of methodologies requires a
knowledge of methodology classes and a classification activity '
allowing determination of a methodology's class. It also requires
a knowledge of methodology characteristics that can be used as a
basis for quantitative measures. These final pieces of technology,
along with the class definition activity needed to develop the

* required knowledge of methodology classes, are highlighted in
" Figure 3.5.

Methodology characteristics support the definition of both
- evaluation measures and methodology classes. As with measures,

these characteristics may merely be attributes of the products
produced by the methodology. Or, they may be attributes of the the
methodology itself, the developers of the methodology, or the users
of the methodology. For example, the following attributes could be
used in characterizing a methodology: "average number of software
modules on a critical timing path", "proportion of real-world
efficiency constraints traceable to units in software products",

• "n.umber of years of experience of methodology's developers in the
area of flight control software", and "required experience in

* .. application area needed to make effective use of the methodology".
• C. These examples indicate that characteristics can be relatively

ill-defined, such as the last example, or relatively well-defined,
such as the third example. To be useful in defining measures of
methodology types, ill-defined characteristics will have to be
elaborated in terms of other, more well-defined ones.

Additionally, classification requires that it is possible to
objectively determine the characteristics of a methodology. Thus,
if a characteristic is not stated in measurable terms, it will be
necessary to identify the metrics pertinent to assessing the
characteristic and define the characteristic in terms of these
metrics.

3-8



... 'Ada Compatible Acpal

Methodolie Xehdooies

*X X

SELECTION"
*FOCUS: CHOICE....

Metod lo ie .........

R MEASURE.........

..........

CLASSIFICATIO cr.ter.

CLAS EINITION:::
Ep

rigure... 3.5: Clasiictin ecnoog

.~~~ .. .....



Criteria, measures and metrics are seemingly similar terms
that are used here in specific ways, as defined in the preceding

Idiscussion. To recap the distinctions which have been made:
- criteria reflect goals or requirements; whether or not a

methodology meets a criteria is determined by "computing" various
measures and then interpreting the values obtained; and a measure
is "computed" by determining a methodology's characteristics and
this is usually most easily done by computing specific,
well-defined metrics. Using an analogy to selecting a car, the
criteria "economical" is determined in terms of the measures "fuel

*' consumption", among others, and determining this measure requires
computing the metrics "mpg, city" and "mpg, highway".

Characteristics may be used to define methodology classes by
defining the attributes common to all methodologies in the class.
The characteristics may be determined by identifying some broad
type of methodologies (such as prototyping methodologies) and then
determining the low-level, well-defined attributes which
characterize methodologies of this type. The set of
characteristics can therefore be incrementally built up by

j r considering different classes in turn and adding any pertinent
characteristics found to be missing from the set.

The classification activity could be done once in preparation
for evaluation or selection, with periodic updates. Or it could be
done as the results are needed. Whenever it is done, it involves

ms using the characteristics to determine the class or classes to
which a methodology belongs. It leads the person performing the
classification through a series of questions, the answers to which

'' determine the characteristics of the methodology and eventually
lead to the identification of the methodology's classification.

I Like all the activities discussed above, the classification
" activity may be empirical. In many cases, the only way to classify

(or evaluate or select) a methodology may be by experimentally
-- using it in some trial situations. Ideally, this experimental

usage will be limited and involve investigation of only "small"
systems. However, the state-of-the-art in experimental methodology

Ievaluation is currently insufficient to guarantee this.

* 3.6 Development of the Technology

-- The preceding discussion of classification, evaluation and
,L selection has introduced the various pieces of technology in a

logical order and uncovered their more obvious interdependencies.
However, it is unlikely that development of this technology will be
able to progress "top-down" in the order presented above. A major

" reason is that it will undoubtedly prove valuable to prototype the --

full technology in order to understand how to best evolve it into
something more extensive and useful.

3-10

7._ 7.. -



Another major reason is that the classification, evaluation
and selection technologies will likely be empirical in nature, and
each will be needed to support the others. For example, the
definition of methodology classes may require the ability to select
a methodology to experiment with or the ability to evaluate a

K methodology with respect to some measures. This leads to the
secondary dependencies shown in Figure 3.6.

Thus, the technology must be gradually and iteratively
elaborated over time. Each step in this elaboration involves:

0 define characteristics: define a set of characteristics
that supports the classification, evaluation and
selection of methodologies; typically this will be the
set that results from previous technology elaboration
steps;

0 develop a classification technology: develop a class
definition procedure and use it to define methodology
classes; develop a methodology classification procedure;
use previously developed evaluation and selection
technology as necessary; expand the set of methodology
characteristics as needed;

* develop an evaluation technology: define quantitative
measures and the means to define selection criteria as a

I Sset of measures to be evaluated; provide the ability to
determine a methodology's "value" with respect to these
measures; use previously developed classification and
selection technologies as necessary; expand the set of
methodology characteristics as needed; and

10 develop a selection technology: develop procedures for
focusing upon candidate methodologies and choosing among
a candidate set of methodologies; use previously

:.... developed classification and evaluation technologies as . ..

necessary; expand the set of methodology characteristics
as needed.

In parallel with these activities, the requirements for
Ada-compatible methodologies will be continuously under
refinement. The refinement will result from the knowledge gained

* in developing the classification, evaluation and selection
technologies. It will also affect the development of these
technologies in that it will focus work on methodologies applicable
to the development and post-deployment support of Ada-ased software
systems.

3-11

~~~~~~~~~~~~~~~~~.;.........-./ ..-...... .. ..... :.-................. .... .......-... ............ .;. . . . ..°-:......-.


Ads-Compatible Acceptable

Methodologies Methodologies

SELECTION
FOCUS CHOICE

Method~isologies

RI
E IEVALUATION
Q measures
R
E IMEASURE
M IDENTIFICATION/
N DEFINITION
T Ii
S t

CLASSIFICATION 1. rtei

methodology
classes

CLASS DEFINITION

7 ~ methodology characteristics

Figure 3.6: Classification, Evaluation and Selection Technologies
for Ada-compatible Methodologies Including Secondary Dependencies

3-12

,:. - --- S- -. . . -.._

While it may appear most logical to progress through the
above activities in the order in which they are presented, this is
not necessary. In fact, not all of them need to be completed for I..
every step in the technology elaboration. Each elaboration step

will result in a better understanding, not only of the emerging
technology, but also of the activities that are needed to~mature it
further. Thus, each elaboration step will provide guidance on what
to do at the next step.

Critical to all of the technology discussed here is a set of
characteristics which will constantly undergo expansion as the
technology is developed. A framework is needed to structure this
set so that the expansion can be conducted in an orderly manner. . "
These characteristics, and their organization via a framework, are
discussed in the next section.

3-13

................................ . .

4.0 METHODOLOGY CHARACTERISTICS FRAMEWORK

Methodology characteristics are central to the development of
selection, evaluation and classification technologies. Potentially,
there is a very large number of characteristics useful for
describing, comparing and contrasting methodologies. The set of
characteristics may potentially never be complete but continue to . A
grow to reflect the appearance of new criteria or the development
of new methodologies. Consequently, there must be an organizing
framework for the characteristics that can be extended as necessary
and easily accommodate new characteristics as they are uncovered.

A preliminary framework for organizing methodology
characteristics and a procedure for enumerating an initial set of
characteristics are introduced in this section. The intent to date
has been to determine the general nature of the framework,
systematize the enumeration of characteristics and populate the
framework with some example characteristics sufficient to
demonstrate its effectiveness and rationale. In the near future,

the framework will be used *for some initial classification
activities. This will support validating and further refining
both the framework and its underlying conceptual basis.

4.1 Overall Structure of the Characteristics Framework

The characteristics framework provides a gross organization
for methodology characteristics by defining four major categories,
indicated in Figure 4.1. These categories highlight four major
concerns which arise when considering methodologies for use on
Ada-based software projects. As such, they separate the

characteristics along the lines of the types of criteria that are
likely to be encountered.

A fifth category, automated support, was suggested by the
previous work done by Freeman and Wasserman (1). It was not
preserved because it was felt that this concern most naturally cuts
across all categories. In the framework described here,
characteristics of the automated tools provided by a methodology
are categorized according to the nature of the support provided by
these tools. As a consequence, the framework makes a strong

:- association between the characteristics of a methodology and the
characteristics of the automated tools supporting use of the
methodology.

Subcategories of characteristics exist for each of the major
* categories. The emphasis so far has been on determining the

subcategories within the technical category. These particular
subcategories have been delineated by considering the different
types of software versions and various approaches for producing
them. As discussed in Section 2, there are three major types of

4-1

77... .

Definition

Technical Characteristics concerning how the

methodology supports the preparation of

products having such desirable properties

as modifiability, efficiency, reliability,

understandability and reusability; in-

cludes characteristics of the production

process (such as resource comsumption) as

well as characteristics of the produced

J. products.

Management Characteristics concerning the support
which the methodology provides for

, a.. -'

management activities such as planning,

tracking, resource allocation and cost

estimation.

Usage Characteristics concerning the process of

acquiring and using the methodology;

including activities such as purchase,

installation of automated support, usage -

monitoring, customization, extension

and training.

" Ada-Compatibility Characteristics concerning the methodology's

encouragement of effective use of the Ada

language and its underlying concepts.

Figure 4.1: Definition of Characteristics Categories
4-2

e: j : ' ' " .,,. . ,., ,,,........,.. .., , , ,.. . ,.

software versions - software systems, software releases and
software variants - and these help in distinguishing among various
methodological concerns. Focusing on these types of versions and
approaches for producing them provides the further categorization
depicted in Figure 4.2.

This figure portrays the gross structure of an extensible
framework for methodology characteristics. This pictorial
representation emphasizes that by focusing attention down through
the levels of categorization, one arrives at a collection of
characteristics that is pertinent to that focus. However, the
strict partitioning of characteristics implied by the figure is not
likely to exist in practice. It is expected that an individual
characteristic will be pertinent to many different focuses and will
therefore appear in several collections of characteristics. Thus,
the framework should not be viewed as a mechanism for partitioning
the characteristics. Rather, it provides a means for categorizing
the characteristics and, as such, assists in identifying sets of
characteristics that have a particular emphasis or utility.

Figure 4.2 also emphasizes that the part of the framework
receiving the most attention concerns product-oriented approaches
to producing variants. Some attention has been given to the other
three major categories and this is discussed later in this section.

;.'-.
Finally, the figure indicates the extensibility of the

framework to accommodate new approaches. Potentially, new
subcategories could be added anywhere in the structure.
Nonetheless, the expectation is that the first two levels will be
relatively static and that future extensions will lead to
additions to the collections of characteristics, the incorporation
of new sub-subcategories within the technical category for

* additional methodology classes, and expansion at the subcategory
* - level for the other major categories.

4.2 Lower Level Structure of the Characteristics Framework ""

The overall structure of the characteristics framework serves
to identify collections of characteristics that are related in
terms of their emphasis on various concerns or issues. However, -,-

- further detailed organization of the individual collections is
needed for three reasons. First, it supports understanding how the

" characteristics relate to each other. Second, it is needed to
understand how they can be used in comparing and contrasting
methodologies. Finally, the organization can help in assuring- that
the collection is reasonably complete. This subsection discusses an
approach to organizing collections of characteristics serving these
purposes.

4-3

.............. *% %*.

Methodology Characteristics

CATEGORY
Major
Concern: Technical Management Ada-Compatibility Usage

SUBCATEGORY
Type of
versions: Software Variant Software Release Software System

S SUB- SUBCATEGORY
General
Methodology
Class: Product-Oriented Prototyping 000

0
Collections of
Characteristics:

0

(a Figure 4.2: Characteristics Framework

4-4

C4

Collections of technical characteristics may be organized
using a two dimensional matrix. This matrix is based on the work
reported by Ross, Goodenough, and Irvine (6), and is shown in
Figure 4.3. The first dimension concerns product quality goals
such as correctness, reliability and portability. The second
concerns general principles that have emerged as beneficial in
meeting these goals. These two dimensions allow organizing a list
of characteristics according to how they reflect a methodology's
support for following one or more of the principles to achieve one
or more of the goals.

The matrix can be used to structure any of the collections of
characteristics found under the major category of technical

- characteristics. The definitions for the goals and principles,
given in Figure 4.3, are in terms of software variants but can

* easily be changed to pertain to software releases and software
- systems. Also, the principles and goals are common across many

approaches. Other matrices will be needed for the other three
major categories since different concerns and issues are of
importance for these categories.

A possible alternative use for these matrices is to check the
completeness of a set of characteristics, or their associated

- metrics. For example, after inserting the characteristics
developed by RADC (7) into the technical matrix, one could check .'V.
their cbmpleteness with respect to the goals and principles of
software engineering as regards product-oriented methodologies and
technical concerns. As other matrices are developed for other
classes of methodologies and other broad categories of concerns,
they could be similarly used to check completeness in these other

situations. .

4.3 Populating the Framework with Characteristics

Our early attempts to enumerate technical characteristics
. failed because of the lack of a concrete focus. At that time,
. deciding whether a particular characteristic was pertinent and how

it related to other characteristics was largely an intuitive
,* matter. Also, there was a lack of consistency in the definition

and level of detail among the identified characteristics.

Experience proved that three things were necessary to support
* the effort of enumerating characteristics. First, it was useful

L to narrow attention to a specific major concern (such as technical
issues), a specific type of software version (such as software

. variants), and a specific class of approaches for developing the
version (such as product-oriented approaches). Second, it was
useful to consider methodology characteristics in terms of how the

. methodology supports the use of modern software technology
principles (like information hiding) to achieve results with

4-5

....

'i~~~~~~~~~~~~~ I -%i7-7V k7 w l-M: . 1 7-

L 10;
;04:304

'rN4 ;Ao N;401r

Or; 0i 44, B6kizD~ ~ "

Do13q . &Jrb.. Ito_____jr

%1.,.
0

0;0

JOrc '40 .4, 1 0;000 .

O re 0 r It.
.

0; x

* 00.00o 00b,,

041 41 100
f', 100; 100414

416 49~ 10 1

L. ~ ~ 4 10%4 a4J1 A
0.

jp.

1064t 004. 14
_704

43-

....................... WI 7j6.........

'

various quality attributes (such as reliability). Third, it was
helpful to think in terms of various objectives that serve to meet
quality-related goals but rely on, or relate to, one or more of the
modern software technology principles.

The first two experiences led to the framework's gross
structure and the characteristic organizing matrices,
respectively. The third led to developing an approach for
enumerating characteristics to populate the various cells in the
matrices. It must be emphasized that this is only one possible
enumeration approach which has been found particularly helpful in
initially populating the matrices with characteristics. Other

approaches -- such as scanning independently developed lists of
characteristics or taking note of characteristics during
demonstrations or experiments -- may prove more useful in the
future when the task will shift to expanding the set of
characteristics rather than determining an initial set.

The enumeration approach consists of considering each goal in
turn, determining the objectives that support meeting this goal,
converting these objectives into characteristics and then placing
these characteristics into the cells corresponding to the

principles that support meeting the identified objective. The first
Y.- two columns of Figure 4.4 show the results of carrying out the .j

first three of these steps for technical characteristics pertinent
to the goal of efficiency and the production of software variants.
The right-hand column of Figure 4.4 indicates which cells in the
efficiency column would receive the enumerated characteristics when
they are placed in the technical matrix.

While these characteristics were enumerated within the
context of product-oriented methodologies, the result can be

Uexpected to be pertinent to most other methodology classes. This
re-emphasizes two previously made points. First, the matrix for
technical characteristics is relatively independent of the
methodology being considered since the matrix is founded on the
goals and principles which must be achieved and utilized,
respectively, by any methodology. Second, the enumeration approach
is useful for determining an initial set of characteristics and
other approaches may be more useful for expanding this initial set.

While use of this enumeration approach is primarily for
" determining an initial set of characteristics, the focus on

objectives does have two beneficial side-effects which may expand
its utility. First, since objectives tend to imply some
measurement, characteristics which are derived from objectives are
themselves likely to be measurable. Additionally, the eventual use
of the characteristics framework in selection activities and for
providing a terminology for stating requirements of methodologies >-p.,-

makes this orientation towards objectives potentially doubly
useful. N

4-7

C')C

LUu

a- .44~. 44

4.

PQ

19 -9

x -. c 41

lu

~ '4-4-8

L in

JV~

Cl) =C 61 -0 4 -JEC.)

ir I

< 2 ILt

W. . 'Gi

11 I
F~4 t;-4t

sj. I

4-9,

cc

It '-t

44.

* I

4' 4

I 6 t
Al.

C2U

4-l

It is critically necessary, when using this enumeration
approach, to do the seemingly redundant step of converting the
objectives into unbiased characteristics. It is the rature of an
objective to include some bias, for example, "Minimize complexity
of ... or "Localize the scope of ... ". Whereas, a
characteristic should be an unbiased statement such as "Degree of
complexity of " or "Extent of scope of " This lack of bias
is necessary since, in some situations, it may be desirable to
compromise a particular objective so that another can be optimized.

It is also critically necessary to determine, as illustrated
in Figure 4.4, subobjectives down to a level leading to measurable
characteristics. While many characteristics are directly
measurable, some will not be. For example, several relatively
well-established metrics, such as Halstead's Software Science
metrics or McCabe's Complexity metric, can be used to evaluate the
characteristic "degree of complexity of software structures".
However, the characteristic "extent to which software structure
supports achieving efficiency constraints" cannot be easily
measured directly and the objective from which it stems must be
successively decomposed until subobjectives are reached that lead
to measurable characteristics.

' A knowledge of metrics is, therefore, crucial to identifying
characteristics. The metrics work done by others, such as at RADC
(6) and within the STARS Measurement area, will of course be
critical in both guiding the enumeration of characteristics and
suggesting characteristics which are not uncovered by enumeration
approaches such as discussed here.

The enumeration approach is, in essence, table-driven and can
be used to identify and organize an initial set of characteristics
in other categories. The matrices for these other categories,

* discussed in the next subsection, can be used to drive the
enumeration approach in order to identify characteristics pertinent
to these other categories.

* 4.4 Defining the Scope of the Other Categories

The organizing matrix shown in Figure 4.3 reflects the goals
- and principles of software engineering. It relates to the

technical aspects of a methodology and, therefore, is most useful
in identifying and organizing the technical category of
characteristics.

Similar matrices for other categories can be obtained by
replacing the goals and principles with those of the other
categories of concern. Organizing metrices have been defined in
this manner for the management, usage and Ada-compatibility
categories and these are discussed in this subsection.

4-11

-I

- ...- --- -.-.-..- -

The management category addresses the planning, organizing
and controlling of software projects. This area of concern involves
consideration of both the management of software products and the _
people involved in the software creation and evolution process.
Consequently, the matrix reflects both purely managerial issues,
such as staff scheduling, and more technically influenced issues,
such as measuring progress against pre-defined milestones. This
matrix is shown in Figure 4.5.

The usage category covers a fairly general area of concern.
It includes issues of how a methodology meets the special needs of
a particular organization and activities such as the initial
acquisition of a methodology by an organization and its subsequent -.
continued use. To achieve this focus, the preliminary matrix given
in Figure 4.6 defines goals that relate to the ability to acquire,
use and adapt the methodology for a specific project or across a
group of projects. The principles defined here indicate some of
the considerations that can support meeting these goals.

The Ada-compatibility category concerns how a methodology
supports the use of Ada. To some extent, this issue is already .
dealt with at a conceptual level by the technical matrix. Because

• - Ada was designed to support achieving the goals of software
engineering, and these are the goals which are compatibility in the
technical matrix, the technical organizing matrix of Figure 4.3S reflects both the technical and Ada-compatibility characteristics .
of a methodology. However, it is still necessary to reflect how a
methodology supports use of Ada at a detailed level and so an
additional matrix has been developed to meet this need. This

*. Ada-compatibility matrix is shown in Figure 4.7.

This final matrix reflects how a methodology supports
5effective use of specific Ada language features. This cannot be

done in isolation of considering how these language features are
being used. For example, the use of representation specifications
for developing software to control peripheral devices will be
different from their use in developing pattern recognition
software. Therefore, the Ada-compatibility matrix uses major
software functions for its goals and the chief Ada language
constructs for its principles. Software functions, such as
peripheral control and process control, are used in preference to
application areas, such as ballistic missile systems and C3 systems --

• since they tend to be better-defined and more specific, whereas
application areas typically involve a variety of different software
functions. Thus, this matrix supports identifying and organizing
characteristics which describe how a methodology supports use of
each language construct in developing different types of software
functions.

4-12

*I °

._ -.. _ ,.........- •...... . - . __._._____

300

* .~. .4JO~::r9b.Z .10 r

.3%..4; zo t

ro4.,lja 'Osrt

0; 440 jo

zd 00

;rrr kO.oJO
4.

AUR

41034

0; "0

.46

T"Orsras
.4

000

* U

If4 0 1 4

4-13

"'.
• 9.. .

4/4 t

00.. -

"-: FAMILIARITY: Use of ,

" commonly known concepts. _

CONSISTENCY: Basing all-,-.

S S

parts of methodology on

a common set of concepts. L:-

• . EXTENSIBILITY: Ensuring".'"

-. ... that new techniques and ..
• '. tools can be incorporated.".--"

0 "~ 03'-'

4-14

..: :-..-:.

C"SITNC:BaigLl

.. 5o

EXTESIBIITY -nsrin
* tha nw.echiqesan

... l tools can be incorporated.~t I ill 11I "I it

0 . ' '. . .

1(9 0

40%
;JDos0___ ___ ___

S. orpt(J *& ,% 'd DN

k .I Ug

1400 rD Q, 0ies

'ri 04 ' e A)
so "046 ca

* ~ /v~vv Agr~L)

*40 ' ;&C -
ar Urss j S01___4__ ______ __SU_____

,;Jo *

eo rrro, 0

s . 0________o

0 , 0 05

S S& a0 00
0Tp 05- %I. 0)

s ca U0 16. .4 .4 .

IOUs~ 41 ~ o.a o

Set;v w~
a.-. a . -OU& Tt...O

&lags 0,704P
Sea 4 ;0 a.

.r .J.

o~jS AoD % ;4-15r

J C& '10 .

............o'~* * racy
..t. -e-t . *. . . . * r%'..

.4.

4.5 Current Status of the Characteristics Framework

The technical matrix and enumeration approach have already

been used to identify some initial technical characteristics. This
initial set of characteristics is incomplete. In particular, the

f K decomposition of objectives to subobjectives is not exhaustive and
further decomposition will result in the identification of
additional characteristics. In the near future, the
characteristics framework will be extended to include additional
collections of characteristics in the technical category and to
cover the other major categories. This framework will continue to
evolve over a span of several years as understanding of the

" ~-: software development and evolution process grows and new types of
software methodologies are developed.

4,-1I

4-16

", -. " . .) ,

5.0 SUMMARY

This document provides a basis for discussing the concerns
and issues of software methodology, identifies the pieces of
technology needed to be able to classify, evaluate and select
among software methodologies, and introduces a flexible framework
for organizing the myriad detailed characteristics needed to
support these technologies. It provides few solutions but,
instead, defines the dimensions of the problems surrounding
software creation and evolution and the general nature of the
solutions. As such, it lays a groundwork for rationally obtaining
and using the technology critically necessary for the disciplined
creation and evolution of software. .

. .6

.5

* .

5--1-2

REFERENCES

4..

{m.. i

(1) Freeman, P., Wasserman, A.I., "Ada Methodologies: Concepts
and Requirements", Ada Joint Program Office, Department of
Defense, November 1982.

(2) "IEEE Standard Glossary of Software Engineering Terminology",

IEEE Computer Society, std. 729-1983.

S(3) Department of Defense, "DoD-STD-2167 Defense System Software

Development," (Draft), January 30, 1984.

(4) Boehm, B.W., Gray, T.E., and Seewaldt, T., "Prototyping
, versus specifying: A multiproject experiment," IEEE Trans. on

Software Engineering, SE-IO, 3, pp. 290-302, May 1984.

4 (5) STARS Measurement Data Item Descriptions (DID's), STARS
Measurement Thrust Area, 1984.

(6) Ross, D.T., Goodenough, J.B., and Irvine, C.A., "Software
Engineering: Process, Principles, and Goals," Computer, May1975.

(7) "Software Quality Measurement for Distributed Systems,"

RADC-TR-83-175, July 1983. 4

iR

,° or. R-1I"Y "

• • *•-. .-.- 4 4 -4 .

~ ~ k, *~ - ___ ____ ____ _____ ____ ___ -

* -- . - - .v XtT~~~..t~.. V7X777...-. - - -. - - .. * - *. -~ -

ml-,.
4

.J.

I.'

APPENDIX A

GLOSSARY

- 1

l* -....~

.1

*~ .1

*
* p ,

* r.

K
K

p...-,

L
....... ~...

Adaptive maintenance performed to make a
Maintenance: software version usable under a changed

set of requirements

Analysis: the activity of determining whether or
not a software version is suitable

Automated Software a collection of tools that assists the
Environment: process of creating and evolving

" * software

Automated System: a system composed of hardware, software
and human components

Characteristic: see Methodology Characteristic

" Characteristic a structure for categorizing
Framework: characteristics

Classification: determining the characteristics of a
methodology and what these
characteristics imply about its general
type

Coding: the phase in the life cycle
during which data or a software versionis represented in a symbolic form thatcan be accepted by a processor

V Conception: the point in time at which there is an
initial perception of need for a

*software version

Corrective maintenance performed to overcome
Maintenance: identified faults

Coverage: extent to which a methodology covers the
full life cycle of some type of version -

*Criteria: use-oriented, high-level attributes
useful in deciding acceptability

, - Data Structuring methodology that focuses initial
al Methodology: attention on the definition of system

inputs and outputs

'... It

- '"",~
A-i

• .* ..,..

Definition: the point in time at which a software
version is described by a document
defining the problem to be solved and
the general nature of and requirements
upon its solution

Delivery: the point in a life cycle at
which a software version is released
for integration into the automated
system of which it is a part

Deployment: The point in a life cycle at
which a software version is released
for operational use

Detailed Design: the phase in a life cycle during which the --
preliminary design is refined and expanded to
contain more detailed descriptions of the
processing logic, data structures, and data
definitions, to the extent that the design is
sufficiently complete to be implemented

Development: the process by which user needs are
transformed into a software version

" that can be delivered

Evaluation: determining whether a methodology meets
certain criteria

Freezing: the point in a life cycle at which it
is decided that no further changes will be

. made to an operational software version

Implementation: see coding

Installation: the process by which a software version
is integrated into its operational
environment and tested in this
environment to ensure that it performs
as required

Life Cycle: the period of time frcm the initial
perception of need for a software
version to its retirement

A-2

Maintenance: modification of a software version after
delivery to correct faults, improve
performance or other attributes, or
meet new requirements .

Measure: a quantity that can be evaluated to
determine whether or not a methodology

4P, meets a particular criteria

" Method: a set of rules, guidelines, and
techniques for carrying out a process

Methodology: a general philosophy for carrying out a

process; comprised of procedures,
principles, and practices

Methodology a detailed attribute that can be used to
. Characteristic: describe a methodology

Metric: a quantity that can be evaluated to
determine whether or not a methodology
has a particular characteristic

Model: a representation which specifies some
but not all of an entity's attributes

Object: an encapsulation of data and/or
processing activity which reflects
some entity in the software or its
operational environment

Object-Oriented a methodology that represents the
Methodology: organization of a piece of software as

a layering of successively more detailed
.- objects

' Operation: use of a version in its operational
environment

Operation and use of a software system in its
Maintenance: operational environment; involves

monitoring for satisfactory performance
. and modification as necessary to correct

problems or respond to changed require-
ments

A- 3

I.5 -, I N%

I

Perfective maintenance performed to improve
Maintenance: performance, maintainability, or other

software attributes

Phase: a period of time during a life cycle

Product-Oriented a methodology that is defined primarily
Methodology: by specifying the intermediate and final

products to be produced; definition of
the products is usually accompanied by
the definition of phases where each
phase is focused on the preparation of
one or more of the products

Post-Deployment see Maintenance
Support:

Preliminary Design: the phase in a life cycle during which

alternatives are analyzed and the general .,.

architecture of a software version is
defined; typically includes definition and

structuring of modules and data, definition
of interfaces, and preparation of timing and
sizing estimates

Product: results created by a process

Prototype: an instance of a software version that

does not exhibit all the properties
of the final system; usually lacking in
terms of functional or performance

p e attributes

Prototyping a methodology that organizes the
Methodology: creation and evolution of a software

version as a series of prototypes

Release: a software version that is delivered for
integration into an automated system

Requirements the phase in the life cycle during
Definition: which the requirements, such as the

functional and performance capabilities,

are defined

A-4P.

4. .*

"., ..- ,-*'..:*,..'. -. *-. ..' . *-..?.....-.:....... .. -..-**I- : :....-..-.-...... ..

Retirement: the point in a life cycle at which a software
version is removed from service

Scope: extent to which a methodology disciplines the
[creation and evolution of a software system

rather than just the individual releases or
variants

O- Selection: picking a methodology, or set of alternative
methodologies, for use on a specific project

Software: the executable code, all of its associated
documentation and documents that trace the
history of its creation and evolution

Software System: a component of an automated system that is
realized as executable code

Specification: the point in time at which a version is
LA described in a document that defines, in a

relatively complete, precise, and verifiable
manner, the requirements of a software
version

Technology: collection of techniques and knowledge5 underlying some process

Test and the phase in a life cycle during which the
Integration: conformance of the version to its

requirements is assessed and the version is
integrated into the larger (software or

* automated) system of which it is a part

Tool: software which assists in carrying out
a task or activity

-*Variant: any of those versions of a software
system which are prepared in the course
of developing a release

Validation: analyzing a version to assure that it
meets user needs

Verification: analyzing a version to assure that it
meets its requirements

Version: any instance of a software system

A-5

.. , .. * . -.. .'.* . * .* * * . - - - * .

I:. . V . . *Ki: -K *-.. *** '**,-.- .. " .-. -. ".

DISTRIBUTION LIST

STARS OFFICE

Dr. Ed Lieblein (3)
STARS Joint Program Office
3D139 (1211 Fern, C107)
Pentagon
Washington, D.C. 20301-3081

F-" MCT CHAIRS

Mr. Lou Chmura
Code 7592

Naval Research Lab
4555 Overlook Avenue, S.W.
Washington, D.C. 20375-5000

* ~ Mr. Peter Fonash
AMC/BAM (AMCDE-SB)
Alexandira, Virginia 22337

Mr. Larry Lindley
Code D/072.2

i 3 Naval Avionics Center
6000 E 21st Street
Indianapolis, Indiana 46218

Mr. Kenneth Rowe
6200 Harris Heights Ave.
Glen Burnie, MD 21061

* Mr. George Sumrall
18 Manor Drive

S' Neptune, NJ 07753

CSED REVIEW PANEL

Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois
912 W. Illinois Street

*Urbana, IL 61801

L%

it-%.

Dr. Barry W. Boehm
TRW Defense Systems Group
MS 02-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel "-, -

Rational Machines
1501 Salado Drive
Moutain View, CA 94043

Mr. Neil S. Eastman, Manager
Software Engineering & Technology
IBM Federal Systems DivisionI k~ 6600 Rockledge Drive
Bethesda, MD 20817

Admiral Noel Gayler, USN, Retired
1250 S. Washington Street
Alexandria, VA 22314

Dr. Charles E. Hutchinson
Dean, Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

II Mr. Oliver Selfridge

45 Percy Road
Lexington, MA 02173

" *. Dr. Harrison Shull, Chancellor
University of Colorado
Campus Box B-17

301 Regent Administration Center
Boulder, CO 80309

Dr. Robert L. Sproull
President Emeritus" University of Rochester

Rochester, NY 14627

DoD-IDA Management Office
1801 N. Beauregard St.
Alexandria, VA 22311

a--.

S Mr. Seymour Deitchman, HQ

Dr. John F. Kramer, Director, CSED
Mr. Gil Bergiass, CSED
Ms. Anne Douville, CSED
Ms. Audrey Hook, CSED
Mr. Joseph Hrycyszyn, CSEDrMr. Robert Knapper, CSED
Ms. Catherine W. McDonald, CSED (10)
Mr. Richard Morton, CSEDLMs. Sarah Nash, CSED
Ms. Katydean Price, CSED (2)

-Mr. Samuel T. Redwine, Jr., CSED (5)

Mr. Clyde Roby, CSED
Dr. John Salasin, CSED
Ms. Francoise Youssefi, OSED

IDA Control & Distribution Vault (10)

2 e- mr24

I

L

.4

.4

(
~1FILMED

~

.4

Y

DTIC
. . . .

